Please wait a minute...
Journal of Advanced Ceramics  2015, Vol. 4 Issue (2): 135-141    doi: 10.1007/s40145-015-0145-1
Research Article     
Influence of variables on the synthesis of CoFe2O4 pigment by the complex polymerization method
aDepartment of Materials Engineering, Federal University of Rio Grande do Norte, Campus Lagoa Nova, CEP 59078-900-Natal/RN, Brazil
bDepartment of Chemistry, Federal University of Paraíba, Cidade Universitária, CEP 58051-900-Jo?o Pessoa/PB, Brazi
cInstitute Physics of S?o Carlos, USP, CEP 13566-590, S?o Carlos, S?o Paulo, Brazil
Download: PDF (1183 KB)      HTML  
Export: BibTeX | EndNote (RIS)      


Synthetic inorganic pigments are most widely used in ceramic applications due to their excellent chemical and thermal stability and their lower toxicity to both human and environment as well. In the present work, black ceramic pigment CoFe2O4 has been synthesized by the complex polymerization method (CPM) with good chemical homogeneity. In order to study the influence of variables on the process of obtaining pigment through CPM, 2(5-2) fractional factorial design with resolution III was used. The variables studied in the mathematical modeling were: citric acid/metal concentration, pre-calcination time, calcination temperature, calcination time, and calcination rate. Powder pigments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–visible (UV–Vis) spectroscopy. Based on the results, the formation of cobalt ferrite phase (CoFe2O4) with spinel structure was verified. The color of pigments obtained showed dark shades, from black to gray. The model adjusted to the conditions proposed in this study due to the determination coefficient of 99.9% and variance (R2) showed that all factors are significant at the confidence level of 95%.

Key wordspigment      complex polymerization method (CPM)      fractional factorial design     
Received: 27 October 2014      Published: 15 April 2015
Corresponding Authors: P. N. MEDEIROS   
Cite this article:

P. N. MEDEIROS,Y. F. GOMES,M. R. D. BOMIO,I. M. G. SANTOS,M. R. S. SILVA,C. A. PASKOCIMAS,M. S. LI,F. V. MOTTA. Influence of variables on the synthesis of CoFe2O4 pigment by the complex polymerization method. Journal of Advanced Ceramics, 2015, 4(2): 135-141.

URL:     OR

Experi-mentCitric acid/metal concentrationPre-calcination time (h)Calcination temperature (℃)Calcination time (h)Calcination rate (℃/min)
12:1 (-1)1 (-1)700 (-1)6 (1)11 (1)
24:1 (1)1 (-1)700 (-1)2 (-1)5 (-1)
32:1 (-1)3 (1)700 (-1)2 (-1)11 (1)
44:1 (1)3 (1)700 (-1)6 (1)5 (-1)
52:1 (-1)1 (-1)900 (1)6 (1)5 (-1)
64:1 (1)1 (-1)900 (1)2 (-1)11 (1)
72:1 (-1)3 (1)900 (1)2 (-1)5 (-1)
84:1 (1)3 (1)900 (1)6 (1)11 (1)
93:1 (0)2 (0)800 (0)4 (0)8 (0)
103:1 (0)2 (0)800 (0)4 (0)8 (0)
113:1 (0)2 (0)800 (0)4 (0)8 (0)
Table 1 2(5-2) fractional factorial design with three replicates at the center point
ExperimentReflectance (%)
Table 2 Results of the reflectance percentage of CoFe2O4 particles
Fig. 1 Reflectance spectra of CoFe2O4 particles obtained by experiments (a) 4, (b) 7, and (c) 9.
Fig. 2 Photomicrographs of cobalt ferrite pigments showing black color by using the obtained statistical design experiments (a) 4, (b) 7, and (c) 9.
Fig. 3 XRD patterns of CoFe2O4 particles obtained by experiments (a) 4, (b) 7, and (c) 9.
Fig. 4 SEM micrographs of CoFe2O4 particles obtained by experiments (a) 4, (b) 7, and (c) 9.
(1) Citric acid/metal concentration1204.971204.9707619.440.000131
(2) Pre-calcination time (h)111.38611.386423.260.002354
(3) Calcination temperature (℃)1217.799217.7998096.330.000123
(4) Calcination time (h)1191.375191.3757114.050.000141
(5) Calcination rate (℃/min)1156.840156.8405830.260.000171
Pure error20.0540.0269
Table 3 Analysis of variance (ANOVA) for the suggested model
EffectPure errort(2)PConfidence level 95%
Mean/interaction49.49600.094694522.6930.000004(49.0886; 49.9034)
(1) Citric acid/metal concentration10.12350.11597687.2890.000131(9.6245; 10.6225)
(2) Pre-calcination time (h)2.38600.11597620.5760.002354(1.8870; 2.8850)
(3) Calcination temperature (℃)10.43550.11597689.9800.000123(9.9365; 10.9345)
(4) Calcination time (h)9.78200.11597684.3450.000141(9.2830; 10.2810)
(5) Calcination rate (℃/min)8.85550.11597676.3560.000171(8.3565; 9.3545)
(3)×(4)-2.48000.115976-21.3840.002180(-2.9790; -1.9810)
(4)×(5)-12.3960.115976-106.8840.000088(-12.8950; -11.8970)
(1)×(3)×(5)-33.57250.222078-151.1750.000044(-34.5280; -32.6170)
Table 4 Estimated effects of the experimental design
Fig. 5 Pareto diagram of the 2(5-2) fractional factorial design showing the influence of the factors studied.
Fig. 6 Values predicted by the model versus observed values, according to the reflectance values.
[1]   Cunha JD, Melo DMA, Martinelli AE, et al. Ceramic pigment obtained by polymeric precursors. Dyes Pigments 2005, 65:11-14.
[2]   Gorodylova N, Kosinová V, Dohnalová ?, et al. New purple-blue ceramic pigments based on CoZr4 (PO4)6. Dyes Pigments 2013, 98:393-404.
[3]   Monrós G. Pigment, Ceramic, Encyclopedia of Color Science and Technology. Springer, 2014.
[4]   Escardino A, Mestre S, Barba A, et al. Kinetic study of black Fe2O3–Cr2O3 pigment synthesis: I, influence of synthesis time and temperature. J Am Ceram Soc 2003, 86:945-950.
[5]   Zaichuk AV, Belyi YI. Black ceramic pigments based on open-hearth slag. Glass Ceram+ 2012, 69:99-103.
[6]   Costa G, Della VP, Ribeiro MJ, et al. Synthesis of black ceramic pigments from secondary raw materials. Dyes Pigments 2008, 77:137-144.
[7]   Hajjaji W, Seabra MP, Labrincha JA. Evaluation of metal-ions containing sludges in the preparation of black inorganic pigments. J Hazard Mater 2011, 185:619-625.
[8]   Maslennikova GN. Pigments of the spinel type. Glass Ceram+ 2001, 58:216-220.
[9]   Mestre S, Palacios MD, Agut P. Solution combustion synthesis of (Co,Fe)Cr2O4 pigments. J Eur Ceram Soc 2012, 32:1995-1999.
[10]   Yüngevis H, Ozel E. Effect of the milling process on the properties of CoFe2O4 pigment. Ceram Int 2013, 39:5503-5511.
[11]   Liu X-M, Fu S-Y, Xiao H-M, et al. Synthesis of nanocrystalline spinel CoFe2O4 via a polymer-pyrolysis route. Physica B 2005, 370:14-21.
[12]   Cavalcante PMT, Dondi M, Guarini G, et al. Colour performance of ceramic nano-pigments. Dyes Pigments 2009, 80:226-232.
[13]   Jia Z, Ren D, Zhu R. Synthesis, characterization and magnetic properties of CoFe2O4 nanorods. Mater Lett 2012, 66:128-131.
[14]   Costa G, Ribeiro MJ, Hajjaji W, et al. Ni-doped hibonite (CaAl12O19): A new turquoise blue ceramic pigment. J Eur Ceram Soc 2009, 29:2671-2678.
[15]   Gargori C, Cerro S, Galindo R, et al. New vanadium doped calcium titanate ceramic pigment. Ceram Int 2011, 37:3665-3670.
[16]   Llusar M, Zielinska A, Tena MA, et al. Blue-violet ceramic pigments based on Co and Mg Co2−xMgxP2O7 diphosphates. J Eur Ceram Soc 2010, 30:1887-1896.
[17]   Ricceri R, Ardizzone S, Baldi G, et al. Ceramic pigments obtained by sol–gel techniques and by mechanochemical insertion of color centers in Al2O3 host matrix. J Eur Ceram Soc 2002, 22:629-637.
[18]   Melo D, Vieira FTG, Costa TCC, et al. Lanthanum cobaltite black pigments with perovskite structure. Dyes Pigments 2013, 98:459-463.
[19]   Blosi M, Albonetti S, Gatti F, et al. Au–Ag nanoparticles as red pigment in ceramic inks for digital decoration. Dyes Pigments 2012, 94:355-362.
[20]   Kakihana M. Invited review “sol–gel” preparation of high temperature superconducting oxides. J Sol–Gel Sci Technol 1996, 6:7-55.
[21]   Bernardi MIB, De Vicente FS, Li MS, et al. Colored films produced by electron beam deposition from nanometric TiO2 and Al2O3 pigment powders obtained by modified polymeric precursor method. Dyes Pigments 2007, 75:693-700.
[22]   Cho W-S, Kakihana M. Crystallization of ceramic pigment CoAl2O4 nanocrystals from Co–Al metal organic precursor. J Alloys Compd 1999, 287:87-90.
[23]   Razpotnik T, Ma?ek J. Synthesis of nickel oxide/zirconia powders via a modified Pechini method. J Eur Ceram Soc 2007, 27:1405-1410.
[24]   Mariappan CR, Galven C, Crosnier-Lopez M-P, et al. Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method. J Solid State Chem 2006, 179:450-456.
[25]   Vieira FTG, Melo DS, de Lima SJG, et al. The influence of temperature on the color of TiO2:Cr pigments. Mater Res Bull 2009, 44:1086-1092.
[26]   Chai Y-L, Chang Y-S, Chen G-J, et al. The effects of heat-treatment on the structure evolution and crystallinity of ZnTiO3 nano-crystals prepared by Pechini process. Mater Res Bull 2008, 43:1066-1073.
[27]   Mohammadia MR, Fray DJ. Low temperature nanostructured zinc titanate by an aqueous particulate sol–gel route: Optimisation of heat treatment condition based on Zn:Ti molar ratio. J Eur Ceram Soc 2010, 30:947-961.
[28]   Box GEP, Hunter WG, Hunter JS. Statistic for Experiments: Design, Innovation, and Discovery, 2nd edn. New York:Wiley, 2005.
[29]   Rautio J, Per?m?ki P, Honkamo J, et al. Effect of synthesis method variables on particle size in the preparation of homogeneous doped nano ZnO material. Microchem J 2009, 91:272-276.
[30]   Rosario AV, Pereira EC. Comparison of the electrochemical behavior of CeO2–SnO2 and CeO2–TiO2 electrodes produced by the Pechini method. Thin Solid Films 2002, 410:1-7.
[31]   Maran JP, Manikandan S. Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes Pigments 2012, 95:465-472.
[32]   Mason RL, Gunst RF, Hess JL. Statistical Design and Analysis of Experiments: With Aplications to Engineering and Science, 2nd edn. New Jersey:John Wiley & Sons, 2003.
[33]   Sánchez MYH, Baena OJR. Síntesis y caracterización colorimétrica de un pigmento negro tipo espinela. CONAMET/SAM-2008.
[34]   Shen L, Qiao Y, Guo Y, et al. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace ?ue dust. J Hazard Mater 2010, 177:495-500.
[35]   Sajjia M, Oubaha M, Prescott T, et al. Development of cobalt ferrite powder preparation employing the sol–gel technique and its structural characterization. J Alloys Compd 2010, 506:400-406.
[36]   Verma KC, Singh VP, Ram M, et al. Structural, microstructural and magnetic properties of NiFe2O4, CoFe2O4 and MnFe2O4 nanoferrite thin films. J Magn Magn Mater 2011, 323:3271-3275.
[37]   Airimioaei M, Ciomaga CE, Apostolescu N, et al. Synthesis and functional properties of the Ni1−xMnxFe2O4 ferrites. J Alloys Compd 2011, 509:8065-8072.
[38]   Lavela P, Tirado JL. CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sources 2007, 172:379-387.
[39]   Sim?es AZ, Riccardi CS, Dos Santos ML, et al. Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films. Mater Res Bull 2009, 44:1747-1752.
[40]   Gimenes R, Baldissera MR, da Silva MRA, et al. Structural and magnetic characterization of MnxZn1-xFe2O4 (x = 0.2; 0.35; 0.65; 0.8; 1.0) ferrites obtained by the citrate precursor method. Ceram Int 2012, 38:741-746.
[41]   Popa M, Calderon-Moreno JM. Lanthanum cobaltite nanoparticles using the polymeric precursor method. J Eur Ceram Soc 2009, 29:2281-2287.
[42]   Montgomery DC. Design and Analysis of Experiments, 5th edn. New York:Wiley, 2001.
[1] Hiroaki ONODA,Miho HARUKI. Effect of mechanical treatment on the powder properties of zinc phosphate white pigments[J]. Journal of Advanced Ceramics, 2015, 4(4): 312-317.
[2] WENDUSU,Tetsuro YOSHIDA,Toshiyuki MASUI,Nobuhito IMANAKA. Novel environmentally friendly inorganic red pigments based on calcium bismuth oxides[J]. Journal of Advanced Ceramics, 2015, 4(1): 39-45.
[3] P. N. MEDEIROS,V. D. ARAÚJO,A. P. A. MARQUES,R. L. TRANQUILIN,C. A. PASKOCIMAS,M. R. D. BOMIO,J. A. VARELA,E. LONGO,F. V. MOTTA. Effect of different starting materials on the synthesis of Ba0.8Ca0.2TiO3[J]. Journal of Advanced Ceramics, 2015, 4(1): 65-70.
[4] Hiroaki ONODA,Syohei FUJIKADO,Takeshi TOYAMA. Preparation of titanium phosphate white pigments with titanium sulfate and their powder properties[J]. Journal of Advanced Ceramics, 2014, 3(2): 132-136.
[5] Maryam HOSSEINI-ZORI. Substitution of a fraction of zircon by cristobalite in nano hematite encapsulated pigment and examination of glaze application[J]. Journal of Advanced Ceramics, 2013, 2(2): 149-156.