Please wait a minute...
Journal of Advanced Ceramics  2015, Vol. 4 Issue (3): 190-198    doi: 10.1007/s40145-015-0146-0
Research Article     
Thermal shock and fatigue behavior of pressureless sintered Al2O3–SiO2–ZrO2 composites
G. MEBRAHITOM ASMELASHa,O. MAMATb,F. AHMADb,A. K. PRASADA RAOa
aFaculty of Manufacturing Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
bUniversiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Download: PDF (470 KB)      HTML  
Export: BibTeX | EndNote (RIS)      

Abstract  

The thermal shock and fatigue behavior of pressureless sintered Al2O3–SiO2–ZrO2 (ASZ) composites was studied. The influence of the thermal shock and fatigue on the strengthening response of ASZ has been investigated by measuring the strength retention and microstructural changes. The magnitude of the flexural strength and fracture of the ASZ has been compared with that of the monolithic Al2O3 (A) and Al2O3–ZrO2 (AZ) composites under the same experimental conditions. Results indicated that the ASZ composites possess the highest resistance against thermal shock and fatigue, in comparison with A and AZ. The improvements were attributed to the enhancement in the fracture toughness of ASZ and the presence of multi-phase reinforcement.



Key wordsceramics      flexural strength      fracture toughness      pressureless sintering      thermal fatigue      thermal shock     
Received: 11 November 2014      Published: 15 August 2015
Cite this article:

G. MEBRAHITOM ASMELASH,O. MAMAT,F. AHMAD,A. K. PRASADA RAO. Thermal shock and fatigue behavior of pressureless sintered Al2O3–SiO2–ZrO2 composites. Journal of Advanced Ceramics, 2015, 4(3): 190-198.

URL:

http://jac.tsinghuajournals.com/10.1007/s40145-015-0146-0     OR     http://jac.tsinghuajournals.com/Y2015/V4/I3/190

Thermal cycle (fatigue) test
Cyclic temperature (℃)Dwelling or soaking time (min)Heating rate (℃/min)Quenching water temperature (℃)Fracture toughness
95030525Vickers indentation method
Thermal shock test
ΔT* (℃)Water bath temperature (℃)Flexural strength
0–950253-point bending method
Table 1 Parameters and methods for thermal cycle (fatigue) and thermal shock tests
Fig. 1 Thermal shock resistance test using water quenching method.
Fig. 2 Schematic crack generated by Vickers indenter.
Fig. 3 Retained flexural strength versus shock temperature difference.
8].">
Fig. 4 XRD pattern of the sintered A–10S–20Z sample [8].
Fig. 5 (a) and (b) FESEM micrographs and (c) EDS spot scan of fractured ASZ composites.
Fig. 6 Sample micro indentation of the Al2O3–10SiO2–20ZrO2 after a series of thermal shock cycles: (a) 4th cycle, (b) 5th cycle, (c) 6th cycle, and (d) 7th cycle.
Sample typeAs-sintered fracture toughness (MPa·m1/2)Fracture toughness value after 6 thermal cycles (MPa·m1/2)
Al2O30.8±0.210.57±0.21
AZ1.75±0.61.565±0.6
ASZ2.39±0.72.138±0.7
Table 2 Fracture toughness values after 6 thermal cycles
Fig. 7 FESEM micrographs of thermal shock induced crack propagation on fractured surfaces at the 6th cycle: (a1) Al2O3, (a2) Al2O3 (magnified), (b) A–20Z, and (c) A–10S–20Z.
[1]   Wang H, Singh RN. Thermal shock behaviour of ceramics and ceramic composites. Int Mater Rev 1994, 39: 228–244.
[2]   Mebrahitom Asmelash G, Mamat O. Processing and characterisation of Al2O3SiO2ZrO2 composite material. International Journal of Microstructure and Materials Properties 2012, 7: 64–76.
[3]   Shackelford JF, Doremus RH. Ceramic and Glass Materials: Structure, Properties and Processing. New York: Springer, 2008.
[4]   Manson SS. Behavior of materials under conditions of thermal stress. National Advisory Committee for Aeronautics (NACA) report 1170, 1953. .
[5]   Fahrenholtz WG, Ellerby DT, Loehman RE. Al2O3–Ni composites with high strength and fracture toughness. J Am Ceram Soc 2000, 83: 1279–1280.
[6]   Shi R, Li J, Wang D, et al. Mechanical properties and thermal shock resistance of Al2O3–TiC–Co composites. J Mater Eng Perform 2009, 18: 414–419.
[7]   Sbaizero O, Pezzotti G. Influence of molybdenum particles on thermal shock resistance of alumina matrix ceramics. Mat Sci Eng A 2003, 343: 273–281.
[8]   Wang Y, Liang J, Han W, et al. Mechanical properties and thermal shock behavior of hot-pressed ZrB2–SiC–AlN composites. J Alloys Compd 2009, 475: 762–765.
[9]   Zhang N, Zhao XJ, Ru HQ, et al. Thermal shock behavior of nano-sized ZrN particulate reinforced AlON composites. Ceram Int 2013, 39: 367–375.
[10]   Tian C, Liu N, Lu M. Thermal shock and thermal fatigue behavior of Si3N4–TiC nano-composites. Int J Refract Met H 2008, 26: 478–484.
[11]   Rendtorff NM, Garrido LB, Aglietti EF. Thermal shock resistance and fatigue of zircon–mullite composite materials. Ceram Int 2011, 37: 1427–1434.
[12]   Panda PK, Kannan TS, Dubois J, et al. Thermal shock and thermal fatigue study of alumina. J Eur Ceram Soc 2002, 22: 2187–2196.
[13]   Aksel C. The influence of zircon on the mechanical properties and thermal shock behaviour of slip-cast alumina–mullite refractories. Mater Lett 2002, 57: 992–997.
[14]   ASTM International. ASTM C1171-05 Standard test method for quantitatively measuring the effect of thermal shock and thermal cycling on refractories. West Conshohocken, PA: ASTM International, 2011.
[15]   Anstis GR, Chantikul P, Lawn BR, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 1981, 64: 533–538.
[16]   Mebrahitom Asmelash G, Mamat O, Ahmad F. Investigation on the effect of silica sand addition in densification of Al2O3–SiO2–ZrO2 composite. J Ceram Process Res 2013, 14: 22–26.
[17]   Mebrahitom Asmelash G, Mamat O, Ahmad F. Toughening mechanisms of Al2O3–SiO2–ZrO2 composite materials. Ceram-Silikaty 2012, 56: 360–366.
[18]   Mebrahitom Asmelash G, Mamat O. Pressureless sintering and characterization of Al2O3–SiO2–ZrO2 composite. Defect and Diffusion Forum 2012, 329: 113–128.
[19]   Zhang HB, Zhou YC, Bao YW, et al. Abnormal thermal shock behavior of Ti3SiC2 and Ti3AlC2. J Mater Res 2006, 21: 2401–2407.
[20]   Hasselman DPH. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J Am Ceram Soc 1969, 52: 600–604.
[21]   Tancret F, Monot I, Osterstock F. Toughness and thermal shock resistance of YBa2Cu3O7-x composite superconductors containing Y2BaCuO5 or Ag particles. Mat Sci Eng A 2001, 298: 268–283.
[22]   Zhao XJ, Ru HQ, Chen DL, et al. Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites. Mat Sci Eng B 2012, 177: 402–410.
[23]   Mezquita S, Uribe R, Moreno R, et al. Influence of mullite additions on thermal shock resistance of dense alumina materials. Part 2: Thermal properties and thermal shock behaviour. Adv Appl Ceram 2001, 100: 246–250.
[1] Zhanming DOU,Gan WANG,Juan JIANG,Fan ZHANG,Tianjin ZHANG. Understanding microwave dielectric properties of (1−x)CaTiO3xLaAlO3 ceramics in terms of A/B-site ionic-parameters[J]. Journal of Advanced Ceramics, 2017, 6(1): 20-26.
[2] Yongqiang CHEN,Bingbing FAN,Gang SHAO,Rui ZHANG. Preparation of large size ZTA ceramics with eccentric circle shape by microwave sintering[J]. Journal of Advanced Ceramics, 2016, 5(4): 291-297.
[3] Jia-Min WU,Ying CHEN,Xiao-Yan ZHANG,Qian HUANG,Jin-Long YANG,Yu-Sheng SHI. Phase evolution and properties of novel Al2O3-based poly-hollow microsphere (PHM) ceramics[J]. Journal of Advanced Ceramics, 2016, 5(2): 176-182.
[4] B. MARX,C. MARX,R. MARX,U. REISGEN,D. C. WIRTZ. Bone cement adhesion on ceramic surfaces—Surface activation of retention surfaces of knee endoprostheses by atmospheric pressure plasma vs. thermal surface treatment[J]. Journal of Advanced Ceramics, 2016, 5(2): 137-144.
[5] M. S. CHAROO,M. F. WANI. Friction and wear properties of nano-Si3N4/nano-SiC composite under nanolubricated conditions[J]. Journal of Advanced Ceramics, 2016, 5(2): 145-152.
[6] Cícero Rafael CENA,Ajay Kumar BEHERA,Banarji BEHERA. Structural, dielectric, and electrical properties of lithium niobate microfibers[J]. Journal of Advanced Ceramics, 2016, 5(1): 84-92.
[7] Jia-Min WU,Xiao-Yan ZHANG,Jie XU,Ke GAN,Jia-Lu LI,Chen-Hui LI,Jin-Long YANG,Yu-Sheng SHI. Preparation of porous Si3N4 ceramics via tailoring solid loading of Si3N4 slurry and Si3N4 poly-hollow microsphere content[J]. Journal of Advanced Ceramics, 2015, 4(4): 260-266.
[8] Henry E. MGBEMERE,Rolf JANSSEN,Gerold A. SCHNEIDER. Investigation of the phase space in lead-free (KxNa1-x)1-yLiy(Nb1-zTaz)O3 ferroelectric ceramics[J]. Journal of Advanced Ceramics, 2015, 4(4): 282-291.
[9] Poorva SHARMA,Ashwini KUMAR,Dinesh VARSHNEY. Rare earth (La) and metal ion (Pb) substitution induced structural and multiferroic properties of bismuth ferrite[J]. Journal of Advanced Ceramics, 2015, 4(4): 292-299.
[10] S. SAMBASIVAM,D. PAUL JOSEPH,S. ASIRI NAIDU,K. N. HUI,K. S. HUI,B. C. CHOI. Intense violet–blue emission and paramagnetism of nanocrystallineGd3+ doped ZnO ceramics[J]. Journal of Advanced Ceramics, 2015, 4(4): 300-306.
[11] M. BELAL HOSSEN,A. K. M. AKTHER HOSSAIN. Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4[J]. Journal of Advanced Ceramics, 2015, 4(3): 217-225.
[12] Xinran ZHANG,Huiling LI,Jianglong WANG. Effect of sintering temperature on thermoelectric properties of CdO ceramics[J]. Journal of Advanced Ceramics, 2015, 4(3): 226-231.
[13] Wei WANG,Boya WANG,Hanghui ZHU,Hongwei LI,Shunxi DENG. A facile method to fabricate Al4B2O9 whiskers on porous SiC substrates for gas–solid separation[J]. Journal of Advanced Ceramics, 2015, 4(3): 232-236.
[14] Mahmoud A. HAMAD. Magnetocaloric effect in La1-xCexMnO3[J]. Journal of Advanced Ceramics, 2015, 4(3): 206-210.
[15] Yao XIONG,Zilong TANG,Yu WANG,Yongming HU,Haoshuang GU,Yuanzhi LI,Helen Lai Wah CHAN,Wanping CHEN. Gas sensing capabilities of TiO2 porous nanoceramics prepared through premature sintering[J]. Journal of Advanced Ceramics, 2015, 4(2): 152-157.