Please wait a minute...
Journal of Advanced Ceramics  2014, Vol. 3 Issue (2): 147-154    doi: 10.1007/s40145-014-0105-1
Research Article     
Microstructure and piezoelectric properties of K5.70Li4.07Nb10.23O30-added K0.5Na0.5NbO3 ceramics
Xuming PANGb,Jinhao QIUa*,Kongjun ZHUa
bDepartment of Mechanical Engineering, Nanjing Tech University, Nanjing 210009, China
aState Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download: PDF (10500 KB)      HTML  
Export: BibTeX | EndNote (RIS)      

Abstract  

Lead-free piezoelectric ceramics K0.5Na0.5NbO3xmol%K5.70Li4.07Nb10.23O30 (x = 0–2.5, KNN–xmol%KLN) were prepared by conventional sintering technique. The phase structure and electrical properties of KNN ceramics were investigated as a function of KLN concentration. The results showed that small amount of KLN introduced into the lattice formed a single phase perovskite structure. The KLN modification lowered the phase transition temperature of orthorhombic–tetragonal (TO–T) and increased the Curie temperature (TC). Some abnormal coarse grains were formed in a matrix when the content of KLN was relatively low (1 mol%). However, normally grown grains were only observed when the sintering aid content was increased to 2 mol%. Proper content of KLN decreased the amount of defects, thus the remanent polarization increased and the coercive field decreased markedly, and the sinterability of the KNN ceramics was simultaneously improved with significant increase of piezoelectric properties.



Key wordsceramics      sintering aid      phase transformation      electrical properties     
Received: 19 January 2014      Published: 12 June 2014
Corresponding Authors: Jinhao QIU   
Cite this article:

Xuming PANG,Jinhao QIU,Kongjun ZHU. Microstructure and piezoelectric properties of K5.70Li4.07Nb10.23O30-added K0.5Na0.5NbO3 ceramics. Journal of Advanced Ceramics, 2014, 3(2): 147-154.

URL:

http://jac.tsinghuajournals.com/10.1007/s40145-014-0105-1     OR     http://jac.tsinghuajournals.com/Y2014/V3/I2/147

Fig. 1 XRD patterns of KNN–xmol%KLN ceramics with different KLN contents.
Fig. 2 Lattice parameters of KNN–xmol%KLN ceramics as a function of the KLN contents.
Fig. 3 SEM micrographs of KNN–xmol%KLN ceramics with various KLN contents: (a) and (b) x = 0; (c) and (d) x = 1; (e) and (f) x = 1.5; (g) and (h) x = 2; (i) and (j) x = 2.5.
Fig. 4 Schematic diagram showing the formation procedure of AGG.
Fig. 5 Density, d33, kp, εr and Qm values of the KNN–xmol%KLN ceramics with 0 ≤ x ≤ 2.5.
Fig. 6 Temperature dependence of dielectric constant εr for KNN–xmol%KLN ceramics.
Fig. 7 PE hysteresis loops of KNN–xmol%KLN ceramics.
[1]   Jaffe B, Roth RS, Marzullo S. Piezoelectric properties of lead zirconate–lead titanate solid–solution ceramics. J Appl Phys 1954, 25: 809–810.
[2]   Park S-E, Shrout TR. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 1997, 82: 1804–1811.
[3]   Fan H, Kim H-E. Effect of lead content on the structure and electrical properties of Pb((Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5)O3 ceramics. J Am Ceram Soc 2001, 84: 636–638.
[4]   Egerton L, Dillom DM. Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J Am Ceram Soc 1959, 42: 438–442.
[5]   Zuo R, Fang X, Ye C. Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett 2007, 90: 092904.
[6]   Haertling GH. Properties of hot-pressed ferroelectric alkali niobate ceramics. J Am Ceram Soc 1967, 50: 329–330.
[7]   Wang R, Xie R, Sekiya T, et al. Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3–PbTiO3 ceramics. Jpn J Appl Phys 2002, 41: 7119–7122.
[8]   Matsubara M, Kikuta K, Hirano S. Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3−K5.4CuTa10O29 ceramics. J Appl Phys 2005, 97: 114105.
[9]   Takao H, Saito Y, Aoki Y, et al. Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J Am Ceram Soc 2006, 89: 1951–1956.
[10]   Yang M-R, Hong C-S, Tsai C-C, et al. Effect of sintering temperature on the piezoelectric and ferroelectric characteristics of CuO doped 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 ceramics. J Alloys Compd 2009, 488: 169–173.
[11]   Park S-H, Ahn C-W, Nahm S, et al. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn J Appl Phys 2004, 43: L1072–L1074.
[12]   Kosec M, Kolar D. On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 1975, 10: 335–339.
[13]   Tashiro S, Nagamatsu H, Nagata K. Sinterability and piezoelectric properties of KNbO3 ceramics after substituting Pb and Na for K. Jpn J Appl Phys 2002, 41: 7113–7118.
[14]   Guo Y, Kakimoto K, Ohsato H. Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics. Solid State Commun 2004, 129: 279–284.
[15]   Kakimoto K, Masuda I, Ohsato H. Ferroelectric and piezoelectric properties of KNbO3 ceramics containing small amounts of LaFeO3. Jpn J Appl Phys 2003, 42: 6102–6105.
[16]   Choi SW, Shrout TR, Jang SJ, et al. Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3–PbTiO3 system. Mater Lett 1989, 8: 253–255.
[17]   Kim M-S, Lee D-S, Park E-C, et al. Effect of Na2O additions on the sinterability and piezoelectric properties of lead-free 95(Na0.5K0.5)NbO3–5LiTaO3 ceramics. J Eur Ceram Soc 2007, 27: 4121–4124.
[18]   Choi S-Y, Kang S-JL. Sintering kinetics by structural transition at grain boundaries in barium titanate. Acta Mater 2004, 52: 2937–2943.
[19]   Kim M-S, Jeong S-J, Song J-S. Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 ceramics. J Am Ceram Soc 2007, 90: 3338–3340.
[20]   Park CW, Yoon DY. Abnormal grain growth in alumina with anorthite liquid and the effect of MgO addition. J Am Ceram Soc 2002, 85: 1585–1593.
[21]   Kim M-S, Fisher JG, Kang S-JL, et al. Grain growth control and solid-state crystal growth by Li2O/PbO addition and dislocation introduction in the PMN–35PT system. J Am Ceram Soc 2006, 89: 1237–1243.
[22]   Li J-F, Wang K, Zhang B-P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 2006, 89: 706–709.
[23]   Zhen Y, Li J-F. Abnormal grain growth and new core–shell structure in (K,Na)NbO3-based lead-free piezoelectric ceramics. J Am Ceram Soc 2007, 90: 3496–3502.
[24]   Ringgaard E, Wurlitzer T. Lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc 2005, 25: 2701–2706.
[25]   Zhao P, Zhang B-P, Li J-F. High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature. Appl Phys Lett 2007, 90: 242909.
[26]   Guo SJ. Powder Sintering Theory. Beijing: Metallurgical Industry Press, 1998.
[27]   Guo Y, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl Phys Lett 2004, 85: 4121–4123.
[28]   Hollenstein E, Davis M, Damjanovic D, et al. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett 2005, 87: 182905.
[1] Zhanming DOU,Gan WANG,Juan JIANG,Fan ZHANG,Tianjin ZHANG. Understanding microwave dielectric properties of (1−x)CaTiO3xLaAlO3 ceramics in terms of A/B-site ionic-parameters[J]. Journal of Advanced Ceramics, 2017, 6(1): 20-26.
[2] Yongqiang CHEN,Bingbing FAN,Gang SHAO,Rui ZHANG. Preparation of large size ZTA ceramics with eccentric circle shape by microwave sintering[J]. Journal of Advanced Ceramics, 2016, 5(4): 291-297.
[3] Xiang SUN,Hong ZHANG,Ya LIU,Jia GUO,Zhicheng LI. Characterization of new negative temperature coefficient thermistors based on Zn–Ni–O system[J]. Journal of Advanced Ceramics, 2016, 5(4): 329-336.
[4] Jia-Min WU,Ying CHEN,Xiao-Yan ZHANG,Qian HUANG,Jin-Long YANG,Yu-Sheng SHI. Phase evolution and properties of novel Al2O3-based poly-hollow microsphere (PHM) ceramics[J]. Journal of Advanced Ceramics, 2016, 5(2): 176-182.
[5] B. MARX,C. MARX,R. MARX,U. REISGEN,D. C. WIRTZ. Bone cement adhesion on ceramic surfaces—Surface activation of retention surfaces of knee endoprostheses by atmospheric pressure plasma vs. thermal surface treatment[J]. Journal of Advanced Ceramics, 2016, 5(2): 137-144.
[6] M. S. CHAROO,M. F. WANI. Friction and wear properties of nano-Si3N4/nano-SiC composite under nanolubricated conditions[J]. Journal of Advanced Ceramics, 2016, 5(2): 145-152.
[7] Cícero Rafael CENA,Ajay Kumar BEHERA,Banarji BEHERA. Structural, dielectric, and electrical properties of lithium niobate microfibers[J]. Journal of Advanced Ceramics, 2016, 5(1): 84-92.
[8] Jia-Min WU,Xiao-Yan ZHANG,Jie XU,Ke GAN,Jia-Lu LI,Chen-Hui LI,Jin-Long YANG,Yu-Sheng SHI. Preparation of porous Si3N4 ceramics via tailoring solid loading of Si3N4 slurry and Si3N4 poly-hollow microsphere content[J]. Journal of Advanced Ceramics, 2015, 4(4): 260-266.
[9] Henry E. MGBEMERE,Rolf JANSSEN,Gerold A. SCHNEIDER. Investigation of the phase space in lead-free (KxNa1-x)1-yLiy(Nb1-zTaz)O3 ferroelectric ceramics[J]. Journal of Advanced Ceramics, 2015, 4(4): 282-291.
[10] Poorva SHARMA,Ashwini KUMAR,Dinesh VARSHNEY. Rare earth (La) and metal ion (Pb) substitution induced structural and multiferroic properties of bismuth ferrite[J]. Journal of Advanced Ceramics, 2015, 4(4): 292-299.
[11] S. SAMBASIVAM,D. PAUL JOSEPH,S. ASIRI NAIDU,K. N. HUI,K. S. HUI,B. C. CHOI. Intense violet–blue emission and paramagnetism of nanocrystallineGd3+ doped ZnO ceramics[J]. Journal of Advanced Ceramics, 2015, 4(4): 300-306.
[12] G. MEBRAHITOM ASMELASH,O. MAMAT,F. AHMAD,A. K. PRASADA RAO. Thermal shock and fatigue behavior of pressureless sintered Al2O3–SiO2–ZrO2 composites[J]. Journal of Advanced Ceramics, 2015, 4(3): 190-198.
[13] Mahmoud A. HAMAD. Magnetocaloric effect in La1-xCexMnO3[J]. Journal of Advanced Ceramics, 2015, 4(3): 206-210.
[14] M. BELAL HOSSEN,A. K. M. AKTHER HOSSAIN. Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4[J]. Journal of Advanced Ceramics, 2015, 4(3): 217-225.
[15] Xinran ZHANG,Huiling LI,Jianglong WANG. Effect of sintering temperature on thermoelectric properties of CdO ceramics[J]. Journal of Advanced Ceramics, 2015, 4(3): 226-231.