Please wait a minute...
Journal of Advanced Ceramics  2013, Vol. 2 Issue (4): 353-359    doi: 10.1007/s40145-013-0083-8
Research Article     
Influence of sintering temperature on electrical properties of (K0.4425Na0.52Li0.0375)(Nb0.8825Sb0.07Ta0.0475)O3 ceramics without phase transition induced by sintering temperature
Shaohua QIAN,Kongjun ZHU,Xuming PANG,Jing WANG,Jinsong LIU,Jinhao QIU
State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download: PDF (5531 KB)      HTML  
Export: BibTeX | EndNote (RIS)      

Abstract  

Lead-free (K0.4425Na0.52Li0.0375)(Nb0.8825Sb0.07Ta0.0475)O3 (KNLNST) piezoelectric ceramics are synthesized by the conventional solid-state reaction method. The sintering temperature and poling temperature dependence of ceramic properties are investigated. Previous studies have shown that variation of sintering temperature can cause phase transition, similar to the morphotropic phase boundary (MPB) behavior induced by composition changes in Pb(Zr,Ti)O3 (PZT). And the best piezoelectric performance can be obtained near the phase-transition sintering temperature. In this research, phase transition induced by sintering temperature cannot be detected and excellent piezoelectric properties can still be obtained. The sintering temperature of the largest piezoelectric coefficient of such composition is lower than that of the highest density, which is considered in composition segregation as a result of intensi?ed volatilization of alkali metal oxides. Combined with the effect of poling temperature, the peak values of the piezoelectric properties are d33 = 313 pC/N, kp = 47%, εr = 1825, tanδ = 0.024, To–t = 88 ℃, and TC = 274 ℃.



Key wordstetragonal      piezoelectric properties      sintering temperature      doped      poling temperature     
Received: 12 July 2013      Published: 10 October 2013
Corresponding Authors: Kongjun ZHU   
Cite this article:

Shaohua QIAN,Kongjun ZHU,Xuming PANG,Jing WANG,Jinsong LIU,Jinhao QIU. Influence of sintering temperature on electrical properties of (K0.4425Na0.52Li0.0375)(Nb0.8825Sb0.07Ta0.0475)O3 ceramics without phase transition induced by sintering temperature. Journal of Advanced Ceramics, 2013, 2(4): 353-359.

URL:

http://jac.tsinghuajournals.com/10.1007/s40145-013-0083-8     OR     http://jac.tsinghuajournals.com/Y2013/V2/I4/353

Fig. 1 XRD patterns of the KNLNST ceramics sintered at different temperatures in the range of 2θ: (a) from 20° to 60°; (b) from 44° to 48°.
Fig. 2 Lattice parameter evolutions as functions of sintering temperature.
Fig. 3 SEM images of the KNLNST ceramics sintered at different temperatures: (a) 1110 ℃, (b) 1120 ℃, (c) 1130 ℃, (d) 1140 ℃, and (e) 1150 ℃.
Fig. 4 Dependence of measured density as a function of sintering temperature.
Fig. 5 Dependence of electrical properties of the KNLNST ceramics sintered at different temperatures: (a) piezoelectric coefficient (d33), (b) planar mode electromechanical coupling coefficient (kp), (c) mechanical quality factor (Qm), and (d) relative permittivity (εr) and dielectric loss (tanδ).
Fig. 6 (a) Polarization–electric field hysteresis loops of the KNLNST ceramics sintered at different temperatures; (b) the variation of polarization (Pr) value as a function of sintering temperature; and (c) the coercive field (Ec) value of KNLNST ceramics sintered at different temperatures.
Fig. 7 (a) Temperature dependence of the dielectric constant (εr) for the KNLNST ceramics sintered at 1110 ℃, 1130 ℃, 1150 ℃ for 3 h measured at 10 kHz; (b) the phase transition temperature (To–t) of KNLNST ceramics sintered at 1110 ℃, 1130 ℃, 1150 ℃; and (c) the Curie temperature (TC) of KNLNST ceramics as a function of sintering temperature.
Fig. 8 Poling temperature dependence of the piezoelectric coefficient (d33) for the KNLNST ceramics sintered at 1130 ℃ for 3 h.
[1]   Haertling GH. Properties of hot-pressed ferroelectric alkali niobate ceramics. J Am Ceram Soc 1967, 50: 229-330.
[2]   Jaeger RE, Egerton L. Hot pressing of potassium–sodium niobates. J Am Ceram Soc 1962, 45: 209-213.
[3]   Hu W, Tan X, Rajan K. Combinatorial processing libraries for bulk BiFeO3–PbTiO3 piezoelectric ceramics. Appl Phys A 2010, 99: 427-431.
[4]   Kosec M, Kolar D. On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 1975, 10: 335-339.
[5]   Narayana Murty S, Ramana Murty KV, Umakantham K, et al. Modi?ed (NaK)NbO3 ceramics for transducer applications. Ferroelectrics 1990, 102: 243-247.
[6]   Cross E. Materials science: Lead-free at last. Nature 2004, 432: 24-25.
[7]   Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium – sodium niobate. J Am Ceram Soc 1959, 42: 438-442.
[8]   Li K, Li FL, Wang Y, et al. Hot-pressed K0.48Na0.52Nb1-xBixO3 (x = 0.05–0.15) lead-free ceramics for electro-optic applications. Mater Chem Phys 2011, 131: 320-324.
[9]   Zhang B-P, Li J-F, Wang K, et al. Compositional dependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramics prepared by spark plasma sintering. J Am Ceram Soc 2006, 89: 1605-1609.
[10]   Xie Z, Gui Z, Li L, et al. Microwave sintering of lead-based relaxor ferroelectric ceramics. Mater Lett 1998, 36: 191-194.
[11]   Pang X, Qiu J, Zhu K, et al. (K, Na)NbO3-based lead-free piezoelectric ceramics manufactured by two-step sintering. Ceram Int 2012, 38: 2521-2527.
[12]   Zhou Y, Guo M, Zhang C, et al. Hydrothermal synthesis and piezoelectric property of Ta-doping K0.5Na0.5NbO3 lead-free piezoelectric ceramic. Ceram Int 2009, 35: 3253-3258.
[13]   Shao B, Qiu J, Zhu K, et al. Influence of sintering temperature on microstructure and electric properties of CuO doped alkaline niobate-based lead-free ceramics. J Mater Sci: Mater El 2012, 23: 1455-1461.
[14]   Lin D, Zheng Q, Kwok KW, et al. Dielectric and piezoelectric properties of MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 lead-free ceramics. J Mater Sci: Mater El 2010, 21: 649-655.
[15]   Wang Y, Liu Q, Zhao F. Phase transition behavior and electrical properties of [(K0.50Na0.50)1-xAgx](Nb1-xTax)O3 lead-free ceramics. J Alloys Compd 2010, 489: 175-178.
[16]   Li Z, Xu G, Li Y, et al. Dielectric and piezoelectric properties of ZnO and SnO2 co-doping K0.5Na0.5NbO3 ceramics. Physica B 2010, 405: 296-299.
[17]   Rubio-Marcos F, Romero JJ, Navarro-Rojero MG, et al. Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J Eur Ceram Soc 2009, 29: 3045-3052.
[18]   Jiang M, Liu X, Chen G, et al. Dielectric and piezoelectric properties of BiMnO3 doped 0.95Na0.5K0.5NbO3–0.05LiSbO3 ceramics. J Mater Sci: Mater El 2011, 22: 876-881.
[19]   Saeri MR, Barzegar A, Ahmadi Moghadam H. Investigation of nano particle additives on lithium doped KNN lead free piezoelectric ceramics. Ceram Int 2011, 37: 3083-3087.
[20]   Su L, Zhu K, Bai L, et al. Effects of Sb-doping on the formation of (K, Na)(Nb, Sb)O3 solid solution under hydrothermal conditions. J Alloys Compd 2010, 493: 186-191.
[21]   Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature 2004, 432: 84-87.
[22]   Pang X, Qiu J, Zhu K, et al. Influence of sintering temperature on piezoelectric properties of (K0.4425Na0.52Li0.0375)(Nb0.8925Sb0.07Ta0.0375)O3 lead-free piezoelectric ceramics. J Mater Sci: Mater El 2011, 22: 1783-1787.
[23]   Wang Y, Damjanovic D, Klein N, et al. High-temperature instability of Li- and Ta-modified (K,Na)NbO3 piezoceramics. J Am Ceram Soc 2008, 91: 1962-1970.
[24]   Jenko D, Bencan A, Malic B, et al. Electron microscopy studies of potassium sodium niobate ceramics. Microsc Microanal 2005, 11: 572-580.
[25]   Choi SW, Shrout TR, Jang SJ, et al. Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3–PbTiO3 system. Mater Lett 1989, 8: 253-255.
[1] Serdar YILDIRIM,Selim DEMIRCI,Kadriye ERTEKIN,Erdal CELIK,Zumre Arican ALICIKUS. Production, characterization, and luminescent properties of Eu3+ doped yttrium niobate–tantalate films[J]. Journal of Advanced Ceramics, 2017, 6(1): 33-42.
[2] Xinran ZHANG,Huiling LI,Jianglong WANG. Effect of sintering temperature on thermoelectric properties of CdO ceramics[J]. Journal of Advanced Ceramics, 2015, 4(3): 226-231.
[3] Xiang-Ping JIANG,Xiao-Long FU,Chao CHEN,Na TU,Ming-Zhu XU,Xiao-Hong LI,Hong SHAO,Yun-Jing CHEN. High performance Aurivillius type Na0.5Bi4.5Ti4O15 piezoelectric ceramics with neodymium and cerium modification[J]. Journal of Advanced Ceramics, 2015, 4(1): 54-60.
[4] Abdel-Mageed H. KHAFAGY,Sanaa M. EL-RABAIE,Mohamed T. DAWOUD,M. T. ATTIA. Microhardness, microstructure and electrical properties of ZVM ceramics[J]. Journal of Advanced Ceramics, 2014, 3(4): 287-296.
[5] Vishakantaiah JAYARAM,Asha GUPTA,K. P. J. REDDY. Investigation of strong shock wave interactions with CeO2 ceramic[J]. Journal of Advanced Ceramics, 2014, 3(4): 297-305.
[6] Rafidah HASSAN,Jumiah HASSAN,Mansor HASHIM,Suriati PAIMAN,Raba'ah Syahidah AZIS. Morphology and dielectric properties of single sample Ni0.5Zn0.5Fe2O4 nanoparticles prepared via mechanical alloying[J]. Journal of Advanced Ceramics, 2014, 3(4): 306-316.
[7] Wei MAI,Feng WEN,Dong XIE,Yongxiang LENG,Zhonglin MU. Structure and composition study of carbon-doped titanium oxide film combined with first principles[J]. Journal of Advanced Ceramics, 2014, 3(1): 49-55.
[8] Yogesh A. CHAUDHARI,Chandrashekhar M. MAHAJAN,Prashant P. JAGTAP,Subhash T. BENDRE. Structural, magnetic and dielectric properties of nano-crystallineNi-doped BiFeO3 ceramics formulated by self-propagating high-temperature synthesis[J]. Journal of Advanced Ceramics, 2013, 2(2): 135-140.
[9] Ke WANG,Jing-Feng LI. (K, Na)NbO3-based lead-free piezoceramics: Phase transition, sintering and property enhancement[J]. Journal of Advanced Ceramics, 2012, 1(1): 24-37.